

Christian BREANT R&T Director 7 March 2013

"Science & Technology for Defence: luxury or need?" Institut Royal supérieur de défense – Bruxelles

European Defence Research and Technology

Defence R&T

Why is there a need for Defence R&T?

- High Tech environment to stay on the cutting edge (Technology watch)
- Flexibility and ability to react within an increasingly complex world
- Knowledge base for advice: smart specifier, smart buyer and smart user
- Development of new concepts for future defence systems
- Critical Technologies for Defence, including European non-Dependence
- Key Industrial capabilities

Defence R&T

Why is there a need for Defence R&T cooperation?

- Why invent the wheel twice or more at different places?
- Cost saving: not affordable for nations to do it all alone (economic crisis)
- Access to research capabilities not affordable for a Member States alone
- Cooperation leverage (joint investment programme)
- Many format: bilateral, regional, multilateral with proper modalities
- Use of European Technology & Innovation Clusters
- Need for dual-use cooperation with civil sector

Objectives of Defence Research & Technology

- To support medium to long term European defence capability needs
- To establish agreed European R&T priorities
- To manage or coordinate R&T projects, on behalf of Member States
- To promote less dependence on critical key technologies
- To contribute to build a competitive European Technological and Industrial Base (EDTIB), including SMEs and Research Centers
- To increase synergies, in co-ordination with the European Commission (defence and security research), ESA (critical space technologies), ...

R&T – Key Technologies to develop

How to select the R&T goals to achieve

- Capability-driven for short and medium terms needs
 - Force Protection, Software Defined Radio (ESSOR), Sense & Avoid (MIDCAS), Maritime Mine C-M (MMCM), CBRN (Bio-EDEP), ...
- Industrial analysis to master technologies for long term needs
 - Future Air Systems (ETAP, UAV, etc.), Ammunitions, ...
- Technology-driven to take care of technical (r)evolutions, ...
 - Mainly R&T projects generated in CapTechs, JIP ICET, ...
- CapTech networks to develop strategic research agendas and technology roadmaps

Capability Development Plan priorities

	CDP "Top 10"		Maturing actions	C	Core drivers / environments	
1.	Counter Improvised	1.	Maritime Mine Counter-	1.	Comprehensive Approach	
	Explosive Device (C-IED)		Measures	2.	Network Enabled	
2.	Medical Support	2.	Chemical Biological		Capabilities	
3.	Intelligence Surveillance		Radiological and Nuclear	3.	Radio Spectrum	
	and Reconnaissance	3.	Counter-Man Portable Air		Management for EU	
4.	Increased Availability of		Defence Systems		Capabilities	
	Helicopters	4.	Military Human Intelligence	4.	Space	
5.	Cyber Defence			5.	Single European Sky	
6.	Multinational Logistic					
	Support					
7.	CSDP Information					
	Exchange					
8.	Strategic and Tactical Airlift					
	Management					
9.	Fuel and Energy					
10. Mobility Assurance						
EUROPEAN						

Combining capability drive and technology push

CapTechs – Technology domains & networks

Information Acquisition & Processing (IAP)	Guidance, Energy & Materials (GEM)	Environment, Systems & Modelling (ESM)
IAP1 Components	GEM1 Materials & Structures	ESM1 Naval Systems & their Environment
IAP2 RF Sensor Systems & Signal Processing	GEM2 Energetics, Missiles & Munitions	ESM2 Aerial Systems & their Environment
IAP3 Optical Sensor Systems & Signal Processing	GEM3 Ground Systems & their Environment	ESM3 Systems of Systems, Space, Simulation & Experiment
IAP4 CIS & Networks	GEM4 Guidance & Control	ESM4 Human Factors & CBR Protection

• The detailed technical coverage of each group is posted on the EDA website (<u>http://www.eda.europa.eu/Aboutus/Howweareorganised/Organisation/RandTdirectorate/CapTechs</u>)

EDA Instruments to foster Defence R&T

EDA funded studies

Typically to review the state of the art of a technology domain, or to carry out a prefeasibility study.

Promote Defence research targeted projects (Cat. B)

About 40 projects so far, all technology domains, mainly underpinning research, average characteristics up to ~10 contributing member states, ~5-6 M€ value (but biggest one was € 50 million), ~3 years duration

• Develop Defence Research Joint Investment Programmes - JIP (Cat. A)

2 projects launched so far (Force Protection, 55M€ and Innovative Technologies, 15 M€), up to 20 contributing members (cM), 2 to 3 years duration, principle of global balance, call for proposals.

• Launch Technology Demonstrators (Cat. B)

To prepare armament programmes, to bridge the valley of death in innovation; 2 projects launched so far: ESSOR (Software Defined Radio, 130 M€) and MIDCAS (Sense and Avoid for UAS, 50 M€), few contributing member states

 Promote work in cooperation with institutional actors (EC and ESA) in European Framework Cooperation (EFC)

EU Defence R&T Expenditure in 2010

Key Facts & Figures for R&T Investment

JIP - FP (Force Protection)

- 20 cM, 55M€, 5 capability areas
- 18 projects funded, 125 entities

JIP - ICET (Disruptive Technologies)

- I5 cM, 15.5M€, 3 technology areas
- 12 projects funded, 75 entities

JIP- UMS (Unmanned Maritime Sys.)

- I1 cM, 53 M€, underwater techno.
- 11 projects funded

Cat. B Projects

- 2007 10 projects signed for 55M€
- 2008 12 projects signed for 76 M€
- 2009 18 projects signed for 81 M€
- 2010 11 projects signed for 68 M€

Technology Demonstrators – ESSOR (130 M€ in 2008) and MIDCAS (50 M€ in 2009)

EDA Joint Investment Programmes (Cat. A)

JIP (1) Force Protection (FP)

19 Member States & Norway – 55 M€

Call 1 - Collective survivability

Call 2 - Tactical wireless com., individual

Call 3 - Data analysis & data fusion

Call 4 - Mission planning and training

- Synchronisation of JIP-FP activities with the EC FP7 activities is possible
- Strong participation of "the small ones" (SME, academia, non-governmental research establishments) – and good success rate (23%) – 4 out of 8 contracts are lead by SME

JIP (2) Innovative Concepts and Emerging Technologies (ICET)

11 Member States & Norway – 15,5 M€

- Promote high risk R&T projects starting at low TRL
- Collect research themes from a broad base SME
 & Academia
- Technology areas
 - Improved Autonomy
 - New Solutions for Materials & Structures
 - Data Capture and Exploitation

Projects for detection capability, GaN

European Technology Non-Dependence

Issue

- Increasing need for strategic approach on European technology dependencies
- Global economic crisis
 - Investments in costly basic technologies are shrinking throughout Europe which increase the technology dependence from the US and Asian suppliers.
 - This continuously growing technology dependence is not only a defence issue; it affects all sectors and has become a strategic issue for Europe.

Raising awareness on European non-dependence

- To address policies and strategies while providing a solid scientific base
 - Include among others: Components (electronics, photonics, etc.), Materials (e.g. carbon fibres) and other Specific devices (GPS) but also industrial policy and strategy.

Cooperation with the European Commission

- The increased exploitation of civilian research and technology work in military systems reduces costs
- The signature of the Lisbon treaty allows closer cooperation between EDA and the European Commission

EFC- European Framework Cooperation SEVENTH FRAMEWORK

- The purpose of the EFC initiative is to improve coordination between the EC FP7 and EDA activities in the development of dual use technologies
- EDA will promote the potential of dual-use technologies for defence needs in the future framework programme HORIZON 2020

to

Horizon 2020

European Framework Cooperation (EFC)

Overall objective:

- promote R&D security cooperation between EDA, ESA and European Commission
- coordination of projects to avoid duplication and to find coherence
- maximising complementarity among civilian security and defence-related security

Governance:

- separate frameworks, separate budgets, and separate rules BUT
- common objectives, synchronised calendars, sharing of expertise & information

Actions:

- Identify suitable topics: CBRN , UAS, Cyber Security
- Time alignment of work programmes and calls where possible
- Evaluation pooling and exchanging expertise where possible
- Simultaneous and coordinated implementation and demonstration
- Information sharing in workshops

Joint Investment Programme on CBRN Protection (JIP CBRN) within EFC

- Objectives: next generation detection (B and C), M&S, improved DECON process and personal/collective protection
- Contributing members States: AT, BE, CZ, DE, ES, IE, IT, FR, NL, PL, PT, SE and NO
- Financial value: ~ 12 M€
- Time frame: 2012 2015
 - Call 1 launch 2 May 2012, First contracts March 2013
 - Call 2 in April 2013

Conclusion on European Defence R&T

- The EDA is working with the Member States to select Critical Defence
 Technologies where collaboration should be directed
- This process is driven by the Capability Development Plan priorities and Industrial strategies
- This approach aims in bringing new dynamic to allow cooperation and innovative R&T projects
- Cooperation instruments put in place have proven to be efficient but need to improve IPR issues, budget availability, alignment, ...
- Increase synergies, with the European Commission (dual use technology research), ESA (critical space technologies), ...

www.eda.europa.eu

Thank you for your attention!